Recent Changes- Search:

edit SideBar


  1. Alpaslan, M. et al. (2016). “Galaxy And Mass Assembly (GAMA): stellar mass growth of spiral galaxies in the cosmic web” MNRAS 457, pp. 2287–2300.
  2. Andrae, R. and K. Jahnke (2011). “Only Marginal Alignment of Disc Galaxies” MNRAS 418.3, p. 2014.
  3. Bardeen, J. M., J. R. Bond, N. Kaiser, and A. S. Szalay (1986). “The Statistics of Peaks of Gaussian Random Fields” ApJ 304, pp. 15–15.
  4. Benson, A. J. (2010). “Galaxy Formation Theory” Phys. Rep. 495.2-3, pp. 33–86.
  5. Berlok, T. and C. Pfrommer (2019). “The Impact of Magnetic Fields on Cold Streams Feeding Galaxies” ArXiv E-Prints, arXiv:1904.02167
  6. Bernardeau, F., S. Colombi, E. Gaztańaga, and R. Scoccimarro (2002). “Large-Scale Structure of the Universe and Cosmological Perturbation Theory”
  7. Bertschinger, E. (1985). “Self-Similar Secondary Infall and Accretion in an Einstein-de Sitter Universe” ApJ Suppl. Ser. 58, p. 39.
  8. Beygu, B. et al. (2016). “The Void Galaxy Survey: Star Formation Properties” MNRAS 458.1, p. 394.
  9. Binney, J. (1977). “The Physics of Dissipational Galaxy Formation” ApJ 215, pp. 483– 483.
  10. Birnboim, Y. and A. Dekel (2003). “Virial Shocks in Galactic Haloes?” MNRAS 345.1, pp. 349–364.
  11. Bond, J. R., S. Cole, G. Efstathiou, and N. Kaiser (1991). “Excursion Set Mass Functions for Hierarchical Gaussian Fluctuations”
  12. Bond, J. R. and S. T. Myers (1996). “The Peak-Patch Picture of Cosmic Catalogs. I. Algorithms” ApJ Suppl. Ser. 103, p. 1.
  13. Bond, J. R., L. Kofman, and D. Pogosyan (1996). “How Filaments of Galaxies Are Woven into the Cosmic Web” Nature 380.6575, p. 603.
  14. Borzyszkowski, M., C. Porciani, E. Romano-Díaz, and E. Garaldi (2017). “ZOMG – I. How the Cosmic Web Inhibits Halo Growth and Generates Assembly Bias”.
  15. Bullock, J. S. et al. (2016). “High Angular Momentum Halo Gas: A Feedback and Code–Independent Prediction of Lcdm”.
  16. Cadiou et al. (2020) “When do cosmic peaks, filaments or walls merge? A theory of critical events in a multi-scale landscape.” arXiv:2003.04413v1 Mar 2020,
  17. Cai, Y.-C., N. Padilla, and B. Li (2015). “Testing gravity using cosmic voids” MNRAS 451, pp. 1036–1055.
  18. Castorina, E., A. Paranjape, O. Hahn, and R. K. Sheth (2016). “Excursion Set Peaks: The Role of Shear”.
  19. Catelan, P. and T. Theuns (1996). “Evolution of the Angular Momentum of Protogalaxies from Tidal Torques: Zel’dovich Approximation” MNRAS 282.2, p. 436.
  20. Cervantes-Sodi, B., X. Hernandez, and C. Park (2010). “Clues on the Origin of Galactic Angular Momentum from Looking at Galaxy Pairs” MNRAS 402.3, p. 1807.
  21. Chisari, N. E. et al. (2017). “Galaxy-Halo Alignments in the Horizon-AGN Cosmological Hydro- dynamical Simulation” MNRAS 472.1, p. 1163.
  22. Codis, S. et al. (2012). “Connecting the Cosmic Web to the Spin of Dark Haloes: Implications for Galaxy Formation” MNRAS 427.4, p. 3320.
  23. Codis, S., C. Pichon, D. Pogosyan, F. Bernardeau, and T. Matsubara (2013). “Non-Gaussian Minkowski functionals & extrema counts in redshift space” 1, pp. 531–564.
  24. Codis, S., C. Pichon, and D. Pogosyan (2015). “Spin Alignments within the Cosmic Web: A Theory of Constrained Tidal Torques near Filaments” MNRAS 452.4, pp. 3369–3393.
  25. Codis, S., D. Pogosyan, and C. Pichon (2018). “On the Connectivity of the Cosmic Web: Theory and Implications for Cosmology and Galaxy Formation” MNRAS 479.1, p. 973.
  26. Colless, M., G. Dalton, S. Maddox, and et al. (2001). “The 2dF Galaxy Redshift Survey: spectra and redshifts” MNRAS 328, pp. 1039–1063.
  27. Cooray, A. and R. Sheth (2002). “Halo Models of Large Scale Structure” Phys. Rep. 372, p. 1.
  28. Corasaniti, P. S. and I. Achitouv (2011). “Excursion Set Halo Mass Function and Bias in a Stochastic Barrier Model of Ellipsoidal Collapse” Phys. Rev. D 84.2, p. 023009.
  29. Cornuault, N., M. D. Lehnert, F. Boulanger, and P. Guillard (2018). “Are Cosmological Gas Accretion Streams Multiphase and Turbulent?” A&A 610, A75.
  30. Crittenden, R. G., P. Natarajan, U.-L. Pen, and T. Theuns (2001). “Spin-induced Galaxy Alignments and Their Implications for Weak-Lensing Measurements” ApJ 559, pp. 552–571.
  31. Dalal, N., M. White, J. R. Bond, and A. Shirokov (2008). “Halo Assembly Bias in Hierarchical Structure Formation” ApJ 687.1, pp. 12–21.
  32. Dalla Vecchia, C. and J. Schaye (2012). “Simulating Galactic Outflows with Thermal Supernova Feedback” MNRAS 426.1, p. 140.
  33. Danovich, M., A. Dekel, O. Hahn, and R. Teyssier (2012). “Coplanar Streams, Pancakes and Angular- Momentum Exchange in High-z Disc Galaxies” MNRAS 422.2, pp. 1732– 1749.
  34. Danovich, M., A. Dekel, O. Hahn, D. Ceverino, and J. Primack (2015). “Four Phases of Angular- Momentum Buildup in High-z Galaxies: From Cosmic-Web Streams through an Extended Ring to Disc and Bulge” MNRAS 449.2, pp. 2087–2111.
  35. de Lapparent, V., M. J. Geller, and J. P. Huchra (1986). “A slice of the universe” ApJ 302, pp. L1–L5.
  36. Dekel, A. et al. (2009). “Cold Streams in Early Massive Hot Haloes as the Main Mode of Galaxy Formation” Nature 457.7228, pp. 451–454.
  37. Dekel, A. and Y. Birnboim (2006). “Galaxy Bimodality Due to Cold Flows and Shock Heating” MNRAS 368.1, pp. 2–20.
  38. Di Matteo, T. et al. (2012). “Cold Flows and the First Quasars” ApJ 745.2, p. L29.
  39. Doroshkevich, A. G. (1973). “Spatial Structure of Perturbations and Origin of Galactic Rotation in Fluctuation Theory” Astrophysics 6.4, pp. 320–330.
  40. Doroshkevich, A. G. (1970). “The Space Structure of Perturbations and the Origin of Rotation of Galaxies in the Theory of Fluctuation.” Astrofizika 6, pp. 581–600.
  41. Dubois, Y. et al. (2012). “Feeding Compact Bulges and Supermassive Black Holes with Low Angular Momentum Cosmic Gas at High Redshift” MNRAS 423.4, pp. 3616–3630.
  42. Dubois, Y. et al. (2013). “Blowing Cold Flows Away: The Impact of Early AGN Activity on the Formation of a Brightest Cluster Galaxy Progenitor” MNRAS 428.4, p. 2885.
  43. Dubois, Y. et al. (2014). “Dancing in the Dark: Galactic Properties Trace Spin Swings along the Cosmic Web” MNRAS 444.2, pp. 1453–1468.
  44. Dubois, Y. et al. (2016). “The HORIZON-AGN Simulation: Morphological Diversity of Galaxies Promoted by AGN Feedback” Monthly Notices of the Royal Astronomical Society 463, pp.3948–3964.
  45. Eardley, E. et al. (2015). “Galaxy and Mass Assembly (GAMA): The Galaxy Luminosity Function within the Cosmic Web” MNRAS 448.4, pp. 3665–3678.
  46. Efstathiou, G., C. S. Frenk, S. D. M. White, and M. Davis (1988). “Gravitational clustering from scale-free initial conditions” MNRAS 235, pp. 715–748.
  47. Eisenstein, D. J. et al. (2005). “Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies” ApJ 633.2, p. 560.
  48. Fakhouri, O., C.-P. Ma, and M. Boylan-Kolchin (2010). “The Merger Rates and Mass Assembly Histories of Dark Matter Haloes in the Two Millennium Simulations” MNRAS 406.4, p. 2267.
  49. Gao, L., V. Springel, and S. D. M. White (2005). “The age dependence of halo clustering” MNRAS 363, pp. L66–L70.
  50. Gao, L. and S. D. M. White (2007). “Assembly Bias in the Clustering of Dark Matter Haloes” MNRAS 377.1, p. L5.
  51. Garaldi, E., E. Romano-Díaz, M. Borzyszkowski, and C. Porciani (2018). “ZOMG - III. The Effect of Halo Assembly on the Satellite Population” MNRAS 473.2, p. 2234.
  52. Gay, C., C. Pichon, and D. Pogosyan (2012). “Non-Gaussian statistics of critical sets in 2D and 3D: Peaks, voids, saddles, genus, and skeleton” Phys. Rev. D 85.2, 023011, p. 023011..
  53. Geller, M. J. and J. P. Huchra (1989). “Mapping the universe” Science 246, pp. 897–903.
  54. Genel, S., R. Genzel, N. Bouché, T. Naab, and A. Sternberg (2009). “The Halo Merger Rate in the Millennium Simulation and Implications for Observed Galaxy Merger Fractions” 2002.
  55. Goh, T. et al. (2019). “Dark Matter Halo Properties versus Local Density and Cosmic Web Location” MNRAS 483.2, p. 2101.
  56. Guo, Q., E. Tempel, and N. I. Libeskind (2015). “Galaxies in Filaments Have More Satellites: The Influence of the Cosmic Web on the Satellite Luminosity Function in the SDSS”ApJ 701.2, p.
  57. Guzzo, L. et al. (2014). “The VIMOS Public Extragalactic Redshift Survey (VIPERS). An Unprecedented View of Galaxies and Large-Scale Structure at 0.5 <; z <1.2” A&A 566, A108.
  58. Hahn, O., C. Porciani, C. M. Carollo, and A. Dekel (2007). “Properties of Dark Matter Haloes in Clusters, Filaments, Sheets and Voids” Mon Not R Astron Soc 375.2, pp. 489–499.
  59. Hahn, O., C. Porciani, A. Dekel, and C. M. Carollo (2009). “Tidal Effects and the Environment Dependence of Halo Assembly” MNRAS 398.4, pp. 1742–1756.
  60. Hahn, O. and A. Paranjape (2014). “The Locations of Halo Formation and the Peaks Formalism” MNRAS 438.1, pp. 878–899.
  61. Hanami, H. (2001). “Statistics of Merging Peaks of Random Gaussian Fluctuations: Skeleton Tree Formalism” MNRAS 327, pp. 721–738.
  62. Hirata, C. M. and U. Seljak (2004). “Intrinsic Alignment-Lensing Interference as a Contaminant of Cosmic Shear” Phys. Rev. D 70.6, p. 063526.
  63. Hopkins, P. F. et al. (2014). “Galaxies on FIRE: Stellar Feedback Explains Cosmologically Inefficient Star Formation” MNRAS 445.1, p. 581.
  64. Huchra, J. P. et al. (2012). “The 2MASS Redshift Survey—Description and Data Release” ApJ Suppl. Ser. 199.2, p. 26.
  65. Hwang, H. S. et al. (2016). “HectoMAP and Horizon Run 4: Dense Structures and Voids in the Real and Simulated Universe” ApJ 818.2, p. 173.
  66. Jennings, E., Y. Li, and W. Hu (2013). “The Abundance of Voids and the Excursion Set Formalism” MNRAS 434.3, p. 2167.
  67. Jőeveer, M., J. Einasto, and E. Tago (1978). “Spatial Distribution of Galaxies and of Clusters of Galaxies in the Southern Galactic Hemisphere” MNRAS 185, p. 357.
  68. Jones, B. J. T., R. van de Weygaert, and M. A. Aragón-Calvo (2010). “Fossil Evidence for Spin Alignment of Sloan Digital Sky Survey Galaxies in Filaments” MNRAS 408.2, p. 897.
  69. Kaiser, N. (1984). “On the Spatial Correlations of Abell Clusters” ApJ 284, pp. L9–L9.
  70. Katz, N. (1992). “Dissipational Galaxy Formation. II. Effects of Star Formation” ApJ 391, p. 502.
  71. Kauffmann, G., S. D. M. White, and B. Guiderdoni (1993). “The Formation and Evolution of Galaxies within Merging Dark Matter Haloes.” MNRAS 264, p. 201.
  72. Kereš, D., N. Katz, D. H. Weinberg, and R. Dave (2005). “How Do Galaxies Get Their Gas?” MNRAS 363.1, pp. 2–28.
  73. Kereš, D., N. Katz, M. Fardal, R. Davé, and D. H. Weinberg (2009). “Galaxies in a Simulated ΛCDM Universe - I. Cold Mode and Hot Cores” MNRAS 395.1, p. 160.
  74. Kerscher, M., I. Szapudi, and A. S. Szalay (2000). “A Comparison of Estimators for the Two-Point Correlation Function” ApJ 535.1, p. L13.
  75. Khandai, N. et al. (2015). “The MassiveBlack-II Simulation: The Evolution of Halos and Galaxies to Z~0” MNRAS 450.2, pp. 1349–1374.
  76. Kim, J.-h. et al. (2013). “The AGORA High-Resolution Galaxy Simulations Comparison Project” ApJS 210.1, p. 14.
  77. Kimm, T., J. Devriendt, A. Slyz, C. Pichon, S. A. Kassin, and Y. Dubois (2011). “The Angular Momentum of Baryons and Dark Matter Halos Revisited” arXiv:1106.0538
  78. Kleiner, D., K. A. Pimbblet, D. H. Jones, B. S. Koribalski, and P. Serra (2017). “Evidence for H I Replenishment in Massive Galaxies through Gas Accretion from the Cosmic Web” MNRAS 466.4, p. 4692.
  79. Kofman, L., D. Pogosyan, S. F. Shandarin, and A. L. Melott (1992). “Coherent Structures in the Universe and the Adhesion Model” ApJ 393, p. 437.
  80. Kraljic, K. et al. (2018). “Galaxy Evolution in the Metric of the Cosmic Web” MNRAS 474.1, p. 547.
  81. Kraljic, K. et al. (2019). “Galaxies Flowing in the Oriented Saddle Frame of the Cosmic Web” MNRAS 483.3, p. 3227.
  82. Laigle, C. et al. (2015). “Swirling around Filaments: Are Large-Scale Structure Vortices Spinning up Dark Haloes?” MNRAS 446.3, p. 2744.
  83. Laigle, C. et al. (2018). “COSMOS2015 Photometric Redshifts Probe the Impact of Filaments on Galaxy Properties” MNRAS 474.4, p. 5437.
  84. Lavaux, G. and B. D. Wandelt (2012). “Precision Cosmography with Stacked Voids” ApJ 754, 109, p. 109.
  85. Lee, J. and U.-L. Pen (2001). “Galaxy Spin Statistics and Spin-Density Correlation” ApJ 555.1, p. 106.
  86. Lee, J. and P. Erdogdu (2007). “The Alignments of the Galaxy Spins with the Real-Space Tidal Field Reconstructed from the 2MASS Redshift Survey”
  87. Libeskind, N. I. et al. (2018). “Tracing the Cosmic Web” MNRAS 473.1, p. 1195.
  88. Lindner, U. et al. (1996). “The distribution of galaxies in voids.” A&A 314, pp. 1–12.
  89. Ludlow, A. D., M. Borzyszkowski, and C. Porciani (2014). “The Formation of CDM Haloes – I. Collapse Thresholds and the Ellipsoidal Collapse Model” MNRAS 445.4, pp. 4110–4123. ApJ 671.2, p. 1248.
  90. Maggiore, M. and A. Riotto (2010). “The Halo Mass Function from Excursion Set Theory. I. Gaussian Fluctuations with Non-Markovian Dependence on the Smoothing Scale” 927. ApJ 711, pp. 907–
  91. Malavasi, N. et al. (2017). “The VIMOS Public Extragalactic Redshift Survey (VIPERS): Galaxy Segregation inside Filaments at z = 0.7” MNRAS 465.4, p. 3817.
  92. Mandelker, N. et al. (2016). “Instability of Supersonic Cold Streams Feeding Galaxies - I. Linear Kelvin-Helmholtz Instability with Body Modes” MNRAS 463.4, p. 3921.
  93. Manrique, A. and E. Salvador-Sole (1995). “The Confluent System Formalism. I. The Mass Function of Objects in the Peak Model” ApJ 453, p. 6.
  94. Martínez, H. J., H. Muriel, and V. Coenda (2016). “Galaxies Infalling into Groups: Filaments versus Isotropic Infall” MNRAS 455.1, p. 127.
  95. Martizzi, D. et al. (2019). “Baryons in the CosmicWeb of IllustrisTNG – II: The Connection among Galaxies, Halos, Their Formation Time and Their Location in the Cosmic Web”, arXiv:1907.04333.
  96. Musso, M. and R. K. Sheth (2012). “One step beyond: the excursion set approach with correlated steps” MNRAS 423, pp. L102–L106.
  97. Musso, M., C. Cadiou, C. Pichon, S. Codis, K. Kraljic, and Y. Dubois (2018). “How Does the Cosmic Web Impact Assembly Bias?” MNRAS 476.4, pp. 4877–4906.
  98. Musso, M. and R. K. Sheth (2014a). “On the Markovian Assumption in the Excursion Set Approach: The Approximation of Markovian Velocities” MNRAS 443.2, p. 1601.
  99. Navarro, J. F. and S. D. M. White (1993). “Simulations of Dissipative Galaxy Formation in Hierarchically Clustering Universes - Part One - Tests of the Code” MNRAS 265, p. 271.
  100. Nelson, D. et al. (2019). “First Results from the TNG50 Simulation: Galactic Outflows Driven by Supernovae and Black Hole Feedback” ArXiv E-Prints, arXiv:1902.05554.
  101. Neyrinck, M. C. (2014). “An Origami Approximation to the Cosmic Web” Proc. Int. Astron. Union 11.S308, pp. 97–102.
  102. Obuljen, A., N. Dalal, and W. J. Percival (2019). “Anisotropic Halo Assembly Bias and Redshift- Space Distortions” ArXiv E-Prints, arXiv:1906.11823 ArXiv E-Phys. Rep. 367.1-3, p. 1 ApJ 379, pp. 440–440.
  103. Ocvirk, P., C. Pichon, and R. Teyssier (2008). “Bimodal Gas Accretion in the Horizon-MareNostrum Galaxy Formation Simulation” MNRAS 390.4, pp. 1326–1338.
  104. Padnos, D., N. Mandelker, Y. Birnboim, A. Dekel, M. R. Krumholz, and E. Steinberg (2018). “Instability of Supersonic Cold Streams Feeding Galaxies-II. Non-Linear Evolution of Surface and Body Modes of Kelvin Helmholtz Instability” MNRAS 477.3, p. 3293.
  105. Pahwa, I. et al. (2016). “The Alignment of Galaxy Spin with the Shear Field in Observations” MNRAS 457.1, p. 695.
  106. Pan, D. C., M. S. Vogeley, F. Hoyle, Y.-Y. Choi, and C. Park (2012). “Cosmic Voids in Sloan Digital Sky Survey Data Release 7” MNRAS 421.2, p. 926.
  107. Paranjape, A., O. Hahn, and R. K. Sheth (2018). “Halo Assembly Bias and the Tidal Anisotropy of the Local Halo Environment” MNRAS 476.3, pp. 3631–3647.
  108. Park, M.-J. et al. (2019). “New Horizon: On the Origin of the Stellar Disk and Spheroid of Field Galaxies” ArXiv E-Prints, arXiv:1905.02216
  109. Peebles, P. J. E. (1969). “Origin of the Angular Momentum of Galaxies” ApJ 155, p. 393.
  110. Pichon, C. and F. Bernardeau (1999). “Vorticity generation in large-scale structure caustics” A&A 343, pp. 663–681
  111. Pichon, C., D. Pogosyan, T. Kimm, A. Slyz, J. Devriendt, and Y. Dubois (2011). “Rigging Dark Haloes: Why Is Hierarchical Galaxy Formation Consistent with the inside-out Build-up of Thin Discs?” MNRAS 418.4, pp. 2493–2507.
  112. Pogosyan, D., J. R. Bond, L. Kofman, and J. Wadsley (1996). “The Cosmic Web and Filaments in Cluster Patches” Am. Astron. Soc. Meet. Abstr. 189, p. 13.03 (cit. on p. 53).
  113. Pogosyan, D. et al. (2009). “The local theory of the cosmic skeleton” MNRAS 396, pp. 635–667.
  114. Porciani, C., A. Dekel, and Y. Hoffman (2002). “Testing Tidal-Torque Theory - II. Alignment of Inertia and Shear and the Characteristics of Protohaloes” MNRAS 332.2, pp. 339–351.
  115. Porter, S. C., S. Raychaudhury, K. A. Pimbblet, and M. J. Drinkwater (2008). “Star Formation in Galaxies Falling into Clusters along Supercluster-Scale Filaments” MNRAS 388.3, p. 1152.
  116. Press, W. H. and P. Schechter (1974). “Formation of Galaxies and Clusters of Galaxies by Self- Similar Gravitational Condensation” ApJ 187, pp. 425–425.
  117. Prieto, J., A. Escala, M. Volonteri, and Y. Dubois (2017). “How AGN and SN Feedback Affect Mass Transport and Black Hole Growth in High-Redshift Galaxies” ApJ 836.2, p. 216.
  118. Ramakrishnan, S., A. Paranjape, O. Hahn, and R. K. Sheth (2019). “Cosmic Web Anisotropy Is the Primary Indicator of Halo Assembly Bias” ArXiv E-Prints, arXiv:1903.02007
  119. Rey, M. P. and A. Pontzen (2017). “Quadratic Genetic Modifications: A Streamlined Route to Cosmological Simulations with Controlled Merger History” 9 (June), pp. 1–9
  120. Romano-Díaz, E., E. Garaldi, M. Borzyszkowski, and C. Porciani (2017). “ZOMG – II. Does the Halo Assembly History Influence Central Galaxies and Gas Accretion?” MNRAS 469.2, pp. 1809–1823.
  121. Rosdahl, J. and J. Blaizot (2012). “Extended Lyα Emission from Cold Accretion Streams” MNRAS 423.1, p. 344.
  122. Rubin, V. C. and W. K. Ford (1970). “Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions” ApJ 159, p. 379. 278
  123. Schäfer, B. M. (2009). “Galactic Angular Momenta and Angular Momentum Correlations in the Cosmological Large-Scale Structure” Int. J. Mod. Phys. D 18.2, p. 173.
  124. Schaye, J. et al. (2015). “The EAGLE Project: Simulating the Evolution and Assembly of Galaxies and Their Environments” Monthly Notices of the Royal Astronomical Society 446, pp. 521– 554.
  125. Shapley, H. and H. D. Curtis (1921). “The Scale of the Universe” Bulletin of the National Research Council, Vol. 2, Part 3, No. 11, p. 171-217 2, pp. 171–217
  126. Sheth, R. K. and G. Tormen (2004). “On the environmental dependence of halo formation” MNRAS 350, pp. 1385–1390.
  127. Sheth, R. K., K. C. Chan, and R. Scoccimarro (2013). “Nonlocal Lagrangian bias” Phys. Rev. D 87.8, 083002, p. 083002.
  128. Sheth, R. K. and R. van de Weygaert (2004). “A Hierarchy of Voids: Much Ado about Nothing” MNRAS 350.2, p. 517.
  129. Shim, J, Codis, S, Pichon, C, Pogosyan, D, and Cadiou, C “The clustering of critical points in the evolving cosmic web” arXiv:2011.04321
  130. Silk, J. (1977). “On the Fragmentation of Cosmic Gas Clouds. I. The Formation of Galaxies and the First Generation of Stars.” ApJ 211, p. 638.
  131. Somerville, R. S. and R. Davé (2015). “Physical Models of Galaxy Formation in a Cosmological Framework” Annu. Rev. A&A 53, p. 51.
  132. Sousbie, T., C. Pichon, S. Colombi, and D. Pogosyan (2008). “The 3D skeleton: tracing the filamen- tary structure of the Universe” MNRAS 383.4, pp. 1655–1670
  133. Sousbie, T., C. Pichon, and H. Kawahara (2011). “The Persistent Cosmic Web and Its Filamentary Structure - II. Illustrations” MNRAS 414.1, p. 384.
  134. Springel, V. and L. Hernquist (2003). “A Multi-Phase Model for Simulations of Galaxy Formation” Astrophys. Supercomput. Using Part. Simul. 208, p. 273
  135. Springel, V., C. S. Frenk, and S. D. M. White (2006). “The Large-Scale Structure of the Universe” Nature 440.7088, p. 1137.
  136. Stewart, K. R. et al. (2013). “Angular Momentum Acquisition in Galaxy Halos” ApJ 769.1, p. 74.
  137. Stewart, K. R. et al. (2017). “High Angular Momentum Halo Gas: A Feedback and Code-Independent Prediction of LCDM” ApJ 843.1, p. 47.
  138. Tempel, E., R. S. Stoica, and E. Saar (2013). “Evidence for Spin Alignment of Spiral and Elliptical/S0 Galaxies in Filaments” MNRAS 428.2, p. 1827.
  139. Tempel, E. and N. I. Libeskind (2013). “Galaxy Spin Alignment in Filaments and Sheets: Observational Evidence” The Astrophysical Journal Letters 775, p. L42.
  140. Tenneti, A., S. Singh, R. Mandelbaum, T. D. Matteo, Y. Feng, and N. Khandai (2015). “Intrinsic alignments of galaxies in the MassiveBlack-II simulation: analysis of two-point statistics” MNRAS 448, pp. 3522–3544.
  141. Tillson, H., J. Devriendt, A. Slyz, L. Miller, and C. Pichon (2015). “Angular Momentum Transfer to a Milky Way Disc at High Redshift” MNRAS 449.4, p. 4363.
  142. Trujillo, I., C. Carretero, and S. G. Patiri (2006). “Detection of the Effect of Cosmological Large-Scale Structure on the Orientation of Galaxies” ApJ 640, pp. L111–L114.
  143. Tweed, D., J. Devriendt, J. Blaizot, S. Colombi, and A. Slyz (2009). “Building Merger Trees from Cosmological N -Body Simulations” A&A 506.2, pp. 647–660.
  144. Van den Bosch, F. C., T. Abel, R. A. C. Croft, L. Hernquist, and S. D. M. White (2002). “The Angular Momentum of Gas in Protogalaxies. I. Implications for the Formation of Disk Galaxies” ApJ 576.1, p. 21.
  145. Vogelsberger, M., S. Genel, D. Sijacki, P. Torrey, V. Springel, and L. Hernquist (2013). “A Model for Cosmological Simulations of Galaxy Formation Physics” MNRAS 436.4, p. 3031.
  146. Wechsler, R. H., A. R. Zentner, J. S. Bullock, A. V. Kravtsov, and B. Allgood (2006). “The Dependence of Halo Clustering on Halo Formation History, Concentration, and Occupation” pp. 71–84.
  147. Welker, C., J. Devriendt, Y. Dubois, C. Pichon, and S. Peirani (2014). “Mergers Drive Spin Swings along the Cosmic Web.” MNRAS 445, p. L46.
  148. White, M. (2014). “The Zel’dovich Approximation” MNRAS 439.4, p. 3630.
  149. White, S.(1984). “Angular Momentum Growth in Protogalaxies” ApJ 286, pp. 38–41.
  150. White, S. and C. S. Frenk (1991). “Galaxy Formation through Hierarchical Clustering” ApJ 379, p. 52.
  151. Zeldovich, Y. B. (1970). “Gravitational Instability: An Approximate Theory for Large Density Perturbations” A&A 5, pp. 84–89.
  152. Zentner, A. R. (2007). “The Excursion Set Theory of Halo Mass Functions, Halo Clustering, and Halo Growth” International Journal of Modern Physics D 16, pp. 763–815. ApJ 652,
Edit - History - Print - Recent Changes - Search
Page last modified on July 28, 2021, at 06:56 AM